Dalam kehidupan sehari-hari, seringkali kita menemukan peristiwa yang berkaitan dengan gerak lurus beraturan, misalnya orang yang berjalan dengan langkah kaki yang relatif konstan, mobil yang sedang bergerak, dan sebagainya.
Suatu benda dikatakan mengalami gerak lurus beraturan jika lintasan yang ditempuh oleh benda itu berupa garis lurus dan kecepatannya selalu tetap setiap saat. Sebuah benda yang bergerak lurus menempuh jarak yang sama untuk selang waktu yang sama. Sebagai contoh, apabila dalam waktu 5 sekon pertama sebuah mobil menempuh jarak 100 m, maka untuk waktu 5 sekon berikutnya mobil itu juga menempuh jarak 100 m.
Mobil dikatakan mengalami gerak lurus beraturan jika lintasannya lurus dan kecepatan konstan.
Secara matematis, persamaan gerak lurus beraturan (GLB) adalah:
dengan:
s = jarak yang ditempuh (m)
v = kecepatan (m/s)
t = waktu yang diperlukan (s)
Jika kecepatan v mobil yang bergerak dengan laju konstan selama selang waktu t sekon, diilustrasikan dalam sebuah grafik v-t, akan diperoleh sebuah garis lurus, tampak seperti pada Grafik berikut.
Grafik hubungan v-t pada gerak lurus beraturan.
Grafik hubungan v-t tersebut menunjukkan bahwa kecepatan benda selalu tetap, tidak tergantung pada waktu, sehingga grafiknya merupakan garis lurus yang sejajar dengan sumbu t (waktu). Berdasarkan Grafik diatas, jarak tempuh merupakan luasan yang dibatasi oleh grafik dengan sumbu t dalam selang waktu tertentu. Hal ini berlaku pula untuk segala bentuk grafik yaitu lurus maupun lengkung.
Sementara itu, hubungan jarak yang ditempuh s dengan waktu t, diilustrasikan dalam sebuah grafik s-t, sehingga diperoleh sebuah garis diagonal ke atas, tampak seperti pada Grafik berikut.
Grafik hubungan s-t pada gerak lurus beraturan.
Dari grafik hubungan s-t tampak pada Grafik diatas, dapat dikatakan jarak yang ditempuh s benda berbanding lurus dengan waktu tempuh t. Makin besar waktunya makin besar jarak yang ditempuh. Berdasarkan Grafik diatas , grafik hubungan antara jarak s terhadap waktu t secara matematis merupakan harga tan α , di mana α adalah sudut antara garis grafik dengan sumbu t (waktu).
Contoh Soal
Sebuah mobil bergerak dengan kecepatan 72 km/jam. Pada jarak 18 km dari arah yang berlawanan, sebuah mobil bergerak dengan kecepatan 90 km/jam. Kapan dan di manakah kedua mobil tersebut akan berpapasan?
Penyelesaian:
Jarak kedua mobil = PQ = 18 km = 18.000 m
Misal, titik R merupakan titik di mana kedua mobil tersebut berpapasan, maka:
PQ = PR + QR
Dengan:
PR = jarak tempuh mobil 1
QR = jarak tempuh mobil 2
Maka:
PQ = v1 t + v2 t
18.000 = (20t + 25t)
18.000 = 45 t
45 t = 18.000
t = 400 s
PQ = v1 .t = (20 m/s)(400 s) = 8.000 m = 8 km
QR = v2 .t = (25 m/s)(400 s) = 10.000 m = 10 km
Jadi, kedua mobil tersebut berpapasan setelah 400 s bergerak, dan setelah mobil pertama menempuh jarak 8 km atau setelah mobil kedua menempuh jarak 10 km.